Title
Modeling time-varying growth using a generalized von Bertalanffy model with application to bloater (*Coregonus hoyi*) growth dynamics in Lake Michigan

Authors
Emily B. Szalai, Guy W. Fleishcher, and James R. Bence

Journal
NRC Research Press Web at http://cjfas.nrc.ca

Abstract
A concurrent increase in lakewide abundance and decrease in size-at-age of bloater (*Coregnus hoyi*) in Lake Michigan have suggested density-dependent growth regulation. We investigated these temporal patterns by fitting a dynamic von Bertalanffy model and length-weight relationship with time-varying parameters to mean length- and weight-at-ages (ages 1-7) from annual surveys (1965-1999). We modeled yearling length, asymptotic size (L_∞), and the parameters of a power relationship between mean weight and mean length (α and β) as changing slowly over time using a random walk model. The Brody growth coefficient (k) was modeled as a linear function L_∞ and k, indicated that under conditions supporting larger asymptotic lengths, individuals approach the asymptote more rapidly. We explored the relationship between year-specific growth parameters and indices of lakewide bloater abundance found evidence of density-dependent growth. However, in the most recent years L_∞ and yearling length have remained low in Lake Michigan despite bloater abundances, suggesting the occurrence of a fundamental shift in the food web.

MICHU
MICHU-05-302

Full text available on National Sea Grant Library, http://nsgd.gso.uri.edu/.